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Some of Berndt’s notable contributions
’86: Müller & Rafelski, strangeness enhancement in AA: first real signal for QGP!

’86: Plunien, Müller & W. Greiner, Casimir effect

’92: Geiger & Müller, seminal work on parton cascades

’03: Fries, Müller, Nonaka & Bass, recombination - amazingly successful

Former post-docs: 
      Tenured:
                 Alec Schramm (Occidental College)
                 Klaus Kinder-Geiger (Deceased)
                 Xin-Nian Wang (LBL)
                 Sen-Ben Liao (National Chung-Cheng Univ, Taiwan)
                 Carsten Greiner (Frankfurt)
                 Dirk Rischke (Frankfurt)
                 Steffen Bass (Duke)
                 Chiho Nonaka (Nagoya)
                 Rainer Fries (Texas A&M)
      TBT (to be tenured):
                 Thorsten Renk (Jyväskyla)
                 Abhijit Majumder (Ohio State Univ.)
      Industry: Jörg Ruppert
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A recent example: chiral magnetic effect
Asakawa, Majumder, & Müller, arXiv:1003.2436; Müller & Schäfer, 1009.1053

Considered anomalous π-γ-ρ coupling Leff ∼ �αβγδ Fαβ ∂γπ0 ρ0
δ

Wess-Zumino-Witten model: general effective Lagrangian for anomalous couplings

Leff ∼
e2Nc

48π2fπ
�αβγδπ0 Fαβ Fγδ −

2ieNc

π2f3
π

�αβγδAα ∂βπ0 ∂γπ+ ∂δπ
− + . . .

First term: π0 → γ γ .  Second term: ω → γ γ γ .  Integrate 2nd term by parts

π0�αβγδ Fαβ ∂γ(π+∂δπ
−) ∼ π0 Bi∂0Ji + π0 �ijkEi∂jJk

π0�αβγδ Fαβ ∂γ(π+∂δπ
−) ∼ π0 Bi ∂0Ji + π0 �ijk Ei ∂jJk

J is the pion e.m. current; J ~ ρ by VMD
B ∂ J is the chiral magnetic effect; E ⋅ ∂ × J , is the chiral electric effect.

AMM: need domains of < π0 >.  Too small to explain STAR data by ~ 10-4.
See, also, Schlichting & Pratt, arXiv:1005.5431 & 1009.4283.
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For Heavy Ions, will LHC be “like” RHIC?
1. Yes: small increase in elliptic flow, (appropriately scaled) multiplicity
            (Nearly) ideal hydro works 

     Approach from strong coupling.  Gyulassy: “Diving into the Black Hole”

2. Sorta: elliptic flow smaller, (scaled) multiplicity higher
           Viscous hydro applies: how much does η/s increase?
           “Semi”-QGP: partial deconfinement near Tc: today

With A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals Altes (DGHKP), 1011....
With Y. Hidaka, 0803.0453, 0906.1751, 0907.4609, 0912.0940

Semi-classical approach in intermediate coupling: 
Hietenan, Kajantie, Laine, Rummukainen, & Schröder, ph/0503061...0811.4664
Andersen, Leganger, Strickland, & Su: ...0911.0676, 1005.1603, 1009.4644

3. Nothing like it: elliptic flow much larger; (scaled) multiplicity - much higher?
  Not “Wit-less”: Busza, arXiv: 0907.4719

         Terra incognita: non-equilbrium distribution 
4



The semi-, versus the complete, Quark Gluon Plasma
Typical plasma in QED: e.g., of H atoms
     Completely ionized plasma, e-‘s and p’s move freely of one another
     Partially ionized plasma: some H atoms, some free charges.  

QCD: deconfinement is the ionization of color charge
     No ionization: confined phase: below Tc

     Total ionization: “complete” Quark-Gluon Plasma 
Lattice: complete QGP above a “few” times Tc

     Partial ionization: “semi”-QGP
                  From a little bit below Tc, to a “few” times Tc

What is a “few” times times Tc? 
Conclusion: used to think semi-QGP broad, Tc+ to ~ 4.0 Tc 
                                          Today: narrow, Tc+ to ~ 1.5 Tc .

If RHIC starts in the semi-QGP, and LHC starts in the complete QGP,
then for heavy ions, LHC will not be like RHIC.
(Many, many qualifications: LHC always cools through semi-QGP, etc....)
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SU(3) gauge theory as a 3-state “clock” model
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T >> Tc T ~ Tc T < Tc

Plot: A. Kurkela

Let Uc = gauge transf. = constant phase.
SU(3): det Uc = 1, so Uc third root of unity:

Under Uc, gluons invariant:

but quarks not.  

‘t Hooft: Z(3) spin from SU(3) color 
Lattice: Z(3) spin symmetry ~ ok with three light flavors.
Measure with thermal Wilson line

Aµ → e−2πi/3 Aµ e2πi/3 = Aµ

Uc =
�
e2πi/3

�j
, j = 0, 1, 2

ψ → e2πi/3 ψ

L = eig
R 1/T
0 A0dτ

confinedsemi-QGPcomplete QGP
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Deconfining transition as a clock model

Complete QGP ↑                     “Semi”-QGP ↑                           Confined Phase ↑
ordered spin system                Some spin defects           completely disordered spins
           T >> Tc                                    T > Tc                                      T < Tc

How to compute defects?  Consider a box, long in one spatial direction.
Put one spin at one end,
another spin at the other.

Degenerate vacua at
both ends.  In between,
an interface forms, tunnel
between degenerate vacua.  
Can compute this (order-order) “interface tension”. L = e

2πi
3 1

L = 1

z
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Path for Z(3) interface
Consider a background field,

Hence the boundary conditions are q = 0 at one end of the box, q = 1 at the other.  

Compute one loop determinant in background field:

t8 =




1 0 0
0 1 0
0 0 −2





Bhattacharya, Gocksch, Korthals-Altes & RDP, hep-ph/9205231

Veff ∼ # T 4 (ct. + q2(1− q)2)

Acl
0 =

2πT

3g
q t8

L(q) = e
2πi
3 q t8

Along this t8 direction,

Constant = ideal gas term for gluons.  

L(1) = e2πi/3 1
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Interface tension 

Electric field ∂i A0 ~ (1/g) dq/dz, 
so effective Lagrangian 

αinter ∼
T 3

�
g2

Leff ∼
T 2

g2

�
dq

dz

�2

+ # T 4 q2(1− q)2

q→0 1

V (q) ↑

Standard tunneling problem in 1 dimension.
Action for tunneling interface tension:

Interface tension equivalent to ‘t Hooft loop, 
wrapping around center of box: measures response to Z(3) magnetic charge
Korthals-Altes, Kovner & Stephanov, hep-ph/9909516
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Path to confinement 
Now consider another
background field

Along the t3 direction,

Acl
0 =

2πT

3g
qc t3 t3 =




1 0 0
0 −1 0
0 0 0





L(qc = 1) = e
2πi
3 t3 =




e2πi/3 0 0

0 e−2πi/3 0
0 0 1





Thus qc = 1 is the confined vacuum for SU(3).  
qc = 0 is the usual perturbative vacuum.

L(1) = e
2πi
3 L(1) trL(1) = trL2(1) = 0Note: Hence:

Veff ∼ # T 4 (ct. + q2
c (1− qc)2)

Veff to ~ g3: Giovannangeli & Korthals Altes, hep-ph/0412322
           ~ g4:  Korthals-Altes, Schroder, & Vuorinen, in progress

L(qc) = e
2πi
3 qct3
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Effective matrix model for confinement 
In pert. thy, perturbative vacuum stable: need new terms to drive confinement.
Meisinger, Miller, & Ogilvie (MMO), hep-ph/0108009:
Add, by hand, a non-pert. potential, ~ T2 ( “Fuzzy Bag”:  RDP, hep-ph/0612191)

Vnon−pt = T 2 Λ2
�
c1 q(1− q) + c2 q2(1− q)2 + c3

�

Vpt = #T 4 q2(1− q)2

Λ mass parameter; c1, c2, c3 dim.’less parameters.  Fix one by p(Tc) = 0.  
MMO: only one parameter, c1.  Can add ∞ series of polynomials in q(1-q).

Need term ~ c1 : with c1, < q > ~ 1/T2.
Otherwise, phase transition from complete (<q> = 0) to semi- (<q> ≠ 0) QGP

Veff = Vpt + Vnon-pt . Veff function of q, q ε Lie algebra, not Lie group.
Fit parameters from pressure (or better, interaction measure, (e-3p)/T4 )
Then compute interface tension and gluons masses.  Only effective theory, not
complete: vs Liao & Shuryak: ph/0611131,0804.0255,0804.4890,0810.4116
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 Results: ‘t Hooft loop, two colors
Pure SU(2): ‘t Hooft loop on lattice, de Forcrand & Noth hep-lat/0506005

Below: comparison between lattice and effective model: good, need better data.
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 Two types of gluon modes near Tc

Compute quantum fluctuations above background field, 
(energy p0 = 2 π n T, n = 0, ± 1, ± 2...)

Off-diagonal color fields, qa ≠ qb heavy: “mass”~ (2 π T ) (n + qa - qb ) ~ 2 π T

Diagonal color fields, qa = qb light: “mass” ~ Debye mass, mD(Q) ~ g T

Unique prediction in semi-QGP: two types of gluon masses

�Aab
0 (�x) Aba

0 (0)�

�
Acl

0

�
ab

=
2πT

g
qa δab

∼
�

d3p

(2π)3
ei�p·�x

+∞�

n=−∞

e−ip0τ

(�p )2 + ((2πT )(n + qa − qb))2 + m2
D(Q)

14



↑log<A(x)A(0)>

↑log<A(x)A(0)>

x→

x→

O. Kaczmarek, arXiv: 0710.0498

 Lattice data, pure SU(3): two masses near Tc?

T = 4.0 Tc↑

T = 1.005 Tc→

15



Comparison: lattice vs model

T→
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Adding quarks
Compute potential for constant A0 with quarks:

Red: potential for constant A0 from SU(3) gluons
<L> = exp(2 π i q/3) 1.  q = 0, 1, 2 are degenerate Z(3) vacua.

Blue: potential from quarks.  Potential at q = 1, 2 ≠ q = 0 , 3.

True test: compute effects of dynamical quarks, see how Tc shifts, etc.
   

q→1 2 30

Acl
0 =

2πT

3g
q t8

←gluons

↓quarks
Vpt(q) ↑
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 Shear viscosity in the semi-QGP, 1

R(l) = ratio of shear viscosity in 
semi-QGP/(complete QGP) for the same value of g
c1, c2 #’s from 
Arnold, Moore, & Yaffe, hep-ph/0302165
As l → 0, R(l) ~ l2.  e.g., R ~ 0.3 for l ~ 0.3

! →

R(!) ↑

∼ !
2
→

←Cusp near 1:
smoothed out
by Q ~ g T?

Nf = 0 →

← Nf = N

η =
c1 T 3

g4 log(c2/g)
R(�)
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 Shear viscosity in the semi-QGP, 2
Leading log shear viscosity/lattice entropy.  αs(Tc) ~ 0.3.
Large increase from Tc to 2 Tc.  Clearly need results beyond leading log.  
Also need to include: quarks and gluons below Tc, hadrons above Tc.  Not easy.
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Lattice: renormalized loop, c/o quarks
Gupta, Hubner & Kaczmarek 0711.2251: Lattice SU(3), no quarks.  
Above: semi-QGP narrow, Tc+ to ~ 1.5 Tc . Lattice: broad, Tc+ to ~ 4 Tc .
Above agrees with Schwinger-Dyson: Marhauser & Pawlowski, 0812.1144
Our analysis does not agree with lattice ren.’d loop: reason for discrepancy?
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 Conclusions

RHIC: (mainly) in the semi-QGP?

LHC: deep in the complete QGP?

Shear viscosity increases going from the semi- QGP,
to the complete QGP.

Today: the width of the semi-QGP is narrow, from ~ Tc to ~ 1.5 Tc, 
and not broad, ~ Tc to ~ 4 Tc.
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John Harris: “Expect the Unexpected” 
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 After Nov. 9, 2010:
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